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Bayesian Updating

Deciding whether or not to carry an umbrella. Look out the window and check the
weather now. Informative about weather later.

Stock market tomorrow. Election outcome and polls. Job market today and decision of
education.

Belief updating via Bayes’s rule.

Today: (1) How to get behaviour ‘as if’ Belief updating = Bayes’s rule from choices; (2)
Properties of Bayesian updating
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Bayesian Updating

Deciding whether or not to carry an umbrella. Look out the window and check the
weather now. Informative about weather later.

Stock market tomorrow. Election outcome and polls. Job market today and decision of
education.

• Update beliefs about state and act accordingly
∀E ⊆ Ω, posterior belief given A ⊆ Ω is

(µ | A)(E) := µ(E|A) = µ(A ∩ E)
µ(A)

, ∀A : µ(A) > 0. (Bayes’ rule)

Issue: beliefs were deduced from preferences/behaviour. Are deduced beliefs
updated according to Bayes rule?

Yes — under some additional restrictions.

Continue with Anscombe-Aumann setup (similar conditions for Savage framework)
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AA SEU: A Refresher

• Ω: set of states of the world, finite;

• X: set of consequences or outcomes, finite;

• f : Ω → ∆(X): an act;

• F := ∆(X)Ω: set of acts;

• ≿⊆ F2: preference relation.

Theorem

(1) A pref. rel. ≿ on F sat. continuity, independence, and separability/monotonicity
⇐⇒ ≿ admits a SEU representation, i.e., ∃u : X → R and µ ∈ ∆(Ω) : f ≿ g ⇐⇒
Eµ[Ef(ω)[u]] ≥ Eµ[Eg(ω)[u]] .
(2) Moreover, u is unique up to positive affine transformations and, if ∃f , g ∈ F : f ≻ g,
µ is unique.
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Bayesian Updating

Enrich AA’s setup
• Events A ∈ E := 2Ω \ {∅} are information; denote DM learning that state ω lies in A.

• Collection of preferences: {≿A}A∈E
Each ≿A is preference relation on acts F
Idea is that ≿A describes behaviour upon learning ω ∈ A.
≿≡≿Ω: DM’s behaviour in absence of any information.

• Start by assuming ∀A ∈ E sat. independence, continuity, and monotonicity
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Bayesian Updating

Definition

{≿A}A∈E satisfy
(i) constant-act consistency iff preferences over constant acts are consistent: for

all lotteries p, q ∈ ∆(X) and events A,B ⊆ Ω, p̃ ≿A q̃ ⇐⇒ p̃ ≿B q̃;

(ii) dynamic consistency if, for all non-null events (wrt≿) A ⊆ Ω and all acts f , g ∈ F ,
fAg ≿Ω g ⇐⇒ f ≿A g;

(iii) consequentialism if, for event A ⊆ Ω, two acts f , g ∈ F deliver the same lottery
f(ω) = g(ω) for every ω ∈ A, then f ∼A g.

Constant-act consistency: if two acts whose (distrib. over) consequences is
independent from the state, then whatever you learn should not change how you
compare them.

Constant-act consistency + independence, continuity, and monotonicity
=⇒ ∃αA > 0, βA ∈ R : uA = αAu + βA.

I.e., constant-act consistency ties in utility functions over consequences.
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Bayesian Updating

Definition

{≿A}A∈E satisfy
(i) constant-act consistency iff preferences over constant acts are consistent: for
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(iii) consequentialism if, for event A ⊆ Ω, two acts f , g ∈ F deliver the same lottery
f(ω) = g(ω) for every ω ∈ A, then f ∼A g.

Dynamic consistency: two acts that differ only when A occurs should be ranked in the
same way before and after knowing ω ∈ A.

This is making DM keep relative beliefs across non-null events constant as information
arrives.
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Bayesian Updating

Definition

{≿A}A∈E satisfy
(i) constant-act consistency iff preferences over constant acts are consistent: for
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(iii) consequentialism if, for event A ⊆ Ω, two acts f , g ∈ F deliver the same lottery
f(ω) = g(ω) for every ω ∈ A, then f ∼A g.

Consequentialism is making sure that events B : B ∩ A = ∅ are null events wrt ≿A.

I.e., the decision-maker believes the information received.
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Bayesian Updating

Theorem

Let {≿A}A∈E be collection of preference relations on F and assume ∃f , g ∈ F : f ≻Ω g.

{≿A}A∈E sat. constant-act consistency, dynamic consistency, and consequentialism,
and ≿A satisfies continuity, independence, and monotonicity A ∈ E if and only if
∃u : X → R and collection of probability measures {µA}A∈E , µA ∈ ∆(Ω) ∀A ∈ E (A ̸= ∅),
s.t.
(i) ∀f , g ∈ F , f ≿A g ⇐⇒ EµA [Ef(ω)[u]] ≥ EµA [Eg(ω)[u]]; and

(ii) for all non-null events wrt ≿Ω, A ∈ E , µA(B) =
µΩ(A∩B)

µΩ(A) ∀B ∈ E .
Moreover, u is unique up to positive affine transformations and µΩ is unique.
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Bayesian Updating

Proof Sketch

By AA’s SEU, ∀ non-null event A ∈ E , ∃uA : X → R and a prior µA ∈ ∆(Ω) s.t. f ≿A g ⇐⇒
EµA [Ef(ω)[uA]] ≥ EµA [Eg(ω)[uA]].
1. Show constant-act consistency implies ∀ non-null event A ∈ E , ∃αA > 0, βA ∈ R :

uA = αAuΩ + βA.

2. Show ∃x, y ∈ X : δ̃x ≻A δ̃y for all non-null events A ∈ E .

3. Use previous step to prove that ∀ non-null events A ∈ E , µΩ(A) > 0.

4. Show ∀f , g, h ∈ F and any non-null event A ∈ E , f ≿A g ⇐⇒ fAh ≿Ω gAh.

5. Show that for any acts f , g, h ∈ F and any non-null event A ∈ E , f ≿A g ⇐⇒
fAh ≿Ω gAh implies that µA(ω) = µΩ(ω)/µΩ(A).

6. Argue for uniqueness claims based on the above and on proof of AASEUTheorem.

7. Verify ‘if’ part, i.e., that representation implies the assumptions on {≿A}A∈E .
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Theorem gives conditions on choices that agents must satisfy if they are behaving like
Bayesian subjective expected utility maximisers.

Note we cannot observe people’s beliefs, only infer them from behaviour.
Violating assumptions here does not imply beliefs are not updated according to
Bayes’ rule (not falsifiable).
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Bayesian Learning

Why do we like Bayesian updating? Because, ultimately, it’s Bayes’s rule!

• Suppose you have a model in which people are Bayesian and they learn from data.
E.g.:
traders observing a signal about fundamentals,
principals who can observe output but not effort,
consumers who get some information on product quality,
farmers who observe which fertilisers their neighbours use.

Would people learn the truth if they could get many signals?

• Suppose you are doing text-analysis (which makes extensive and intensive use of
latent Dirichlet classification and Bayesian updating in topic modelling).
How do you perform inference without a Bayesian law of large numbers (LLN) and
something similar to a Bayesian central limit theorem (CLT)?

In about every field of economics, we implicitly or explicitly have to deal with Bayesian
learning and its properties and implications.

But... What are its properties and implications?
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Setup

Prior Beliefs: DM entertains hypotheses about the world summarised by (i) parameter
θ ∈ Θ and (ii) prior belief, i.e., probability measure µ ∈ ∆(Θ).

Data: DM observes sequence of random variables {Xn}n. First n observations:
Xn = (X1, ...,Xn).

Likelihood: given a parameter θ, (DM belives) data Xn distributed according to
probability Pn

θ (the likelihood).
Often, Xi are iid observations (and Pn

θ is product measure), but generally they need
not be. Assume iid data for convenience.

Each prior gives rise to joint distrib. of (θ,Xn) (think about what this statement means).

Posterior Beliefs: Upon observing the data, DM updates beliefs about θ using Bayes’s
rule, forming a posterior belief µn ≡ µ | Xn — the conditional distrib. θ given Xn.

Throughout, consider µn is well-defined, in which case ‘posterior belief ∝ likelihood ×
prior belief’.
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Consistency of Bayesian Learning

Crucial question: (when) does DM eventually learn θ?

Definition

The posterior distribution µn is consistent at θ0 if for any neighbourhood U of θ0,
µn(U) → 1 almost surely under the law determined by θ0, i.e., the distribution of Xn

determined by θ0.

Prior µ is misspecified if true model θ0 is not in the support of µ.

Assume: Pθ ̸= Pθ′ ∀θ ̸= θ
′. (i.e., Identifiability.)

Immediately: consistency requires parameter to be identifiable from data, Pθ0 ̸= Pθ

for any θ ̸= θ0;
(but would be weird to assume this only for true (unknown) parameter θ0)
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Consistency of Bayesian Learning

Theorem (Doob (1948))

∀ prior µ ∈ ∆(Θ), posterior µn is consistent at every θ except possibly on a set of µ-
measure zero.

The Good: DM learns! A sanity check! A triumph for Bayesianism!

The Bad (and Ugly): Learning can fail even if θ0 is in supp(µ), and the result says
nothing about which θ0 can be learned...
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Consistency of Bayesian Learning

Is it always the case that with a lot of iid data, Bayesian learning always leads to
learning?
(insofar as the prior belief is not misspecified and identification is possible)

Unfortunately no...

Example: Learning the wrong thing

θ: pmf on N. True model θ0 is geometric distrib. with parameter 1/4.

Freedman (1963): ∃ prior µ assigning positive mass to every neighbourhood of θ0 but
with posterior beliefs concentrating on geometric distribution with parameter 3/4.

DM ‘learns’, but becomes fully convinced of something that is not true!
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Consistency of Bayesian Learning

Example: Learning the wrong thing (bis)

Consider parameters and priors with support in countably infinite set (as N).

Freedman (1965): Set of pairs of priors and true parameters inducing consistent pos-
teriors is meager (countable union of nowhere dense sets).

Freedman (1963) not just a pathological example: the rule rather than exception.

Who cares? YOU!
Care is needed to actually learn the truth (in your models, in your estimation, etc.)
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Consistency of Bayesian Learning

Theorem (Diaconis & Freedman (1990))

If (i) Xn are iid and can only take finitely many values, and (ii) Pθ ̸= Pθ′ ∀θ ̸= θ
′, then for

any prior µ, the posterior µn is consistent at every θ in the support of µ.

Better than that: there are results (see Diaconis & Freedman 1990) providing explicit
convergence rates and bounds for how concentrated the posterior is around the
empirical mean!

And beyond finite cases?

Theorem (Schwartz (1965))

Let Θ be class of densities and Xn be iid with density θ0 ∈ Θ. Let µ ∈ ∆(Θ) : ∀ε > 0,
µ ({θ ∈ Θ |

∫
θ0 ln(θ0/θ) < ε}) > 0. Then, the posterior belief µn is consistent at θ0.

Practical sufficient condition for consistency: if {fθ, θ ∈ Θ} is family of densities
smoothly parametrised by parameter θ ∈ Rk (k finite), and Xn

iid∼ fθ0 , then consistency
obtained if and only if θ0 lies in the support of the prior.

Consistency ≈ LLN. Can we get Bayesian CLT? Yes! See Ghosal (1997) and references
there.
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Conjugate Priors

θ ∈ Θ; X rv with likelihood Pθ, taking values in X

A set M ⊆ ∆(Θ) is a conjugate prior if ∀µ ∈ M, posterior µ | X = x ∈ M, ∀x ∈ X .

E.g., Θ finite, ∆(Θ) is a conjugate prior.
Not very useful, but important reminder: no such thing as the conjugate prior.
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Conjugate Priors

Useful Examples

• Likelihood: Bernoulli, X ∼ Bernoulli(θ).
Beta distribution family is a conjugate prior: θ ∼ Beta(α0,α1) =⇒ θ|X = x ∼
Beta(α0 + (1 – x),α1 + x).

• Likelihood: categorical (generalization of Bernoulli),X ∈ {1, ..., k}, X ∼ Categorical(θ)
where θ = (θ1, ..., θk) ∈ ∆

k–1.
Dirichlet distribution family (generalization of Beta) is a conjugate prior: θ ∼
Dirichlet(α) =⇒ θ|X = x ∼ Dirichlet(α + ex), where α = (αi)i=1,...,k and ex =
(1x=1, ..., 1x=k).

• Likelihood: Gaussian, X ∼ N (µ,Σ).
Normal distribution family is a conjugate prior: µ ∼ N (µ0,Σ0) =⇒ µ|X = x ∼
N (µ1,Σ1), where µ1 = Σ1(Σ–1

0 µ0 + Σ
–1x) and Σ1 = (Σ–1

0 + Σ
–1)

–1
.

Also: reparameterize Normal distrib. with precision matrix τ = Σ
–1, µ ∼ N (µ0, τ0)

and µ|x ∼ N (µ1, τ1), where µ1 = τ
–1
1 (τ0µ0 + τx) and τ1 = τ0 + τ.

• Also exist tractable families for unknown precision τ ∼ Gamma(α, β).

• Other famouspairs: (Poisson, Gamma), (Exponential, Gamma), (Uniform, Pareto).
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Overview

1. Uncertainty

2. Characterising Bayesian Updating

3. Properties of Bayesian Updating

4. More



More on Bayesian Learning

• Merging of Opinions: If people see similar data, (when) will their opinions tend to
converge to the same thing?

Blackwell & Dubins (1962), Kalai & Lehrer (1994 JMathEcon), and Acemoglu,
Chernozhukov, & Yildiz (2016 TE) address these issues. Kalai & Lehrer (1993 Ecta)
use this to study learning to play NE.

• Social Learning: If everyone gets a signal, but we only learn from others’ actions,
(when) do we get to learning the true state?

Applications: Innovation adoption, stock market, etc.

Answer: it depends! See Bikhchandani, Hirshleifer, & Welch (1992 JPE), Smith &
Sorensen (2000 Ecta) for classical refs.
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More on Bayesian Learning

• Common Learning:
Suppose group speculators observe signals about fundamentals. WT strike iff
learn currency is weak with sufficiently high degree of certainty.

Need to coordinate their efforts to strike. As they wait, they may learn perfectly
whether or not the currency is weak, but also need to know that others have
learned (to a prespecified sufficient degree of confidence) that the currency is
weak. (and so on...)

Common learning: have individuals learn the truth, and also learn that all learned
the truth, and that all have learned that all have learned the truth, and so on.

Cripps, Ely, Mailath, & Samuelson (2008 Ecta): common learning obtained if prior
and likelihood are CK and have full support. But common learning may also fail!
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Common learning: have individuals learn the truth, and also learn that all learned
the truth, and that all have learned that all have learned the truth, and so on.

Cripps, Ely, Mailath, & Samuelson (2008 Ecta): common learning obtained if prior
and likelihood are CK and have full support. But common learning may also fail!
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More on Bayesian Updating at Large!

• Methods to Elicit Beliefs: important beyond just experimental and theory! E.g.,
development and education (Dizon-Ross 2019 AER), macro (Bordalo et al. 2020 AER),
health (Miller, de Paula, & Valente, 2025 JEconometrics), finance (Giglio et al. 2021
AER), political economy (Ortoleva Snowberg 2015 AER)

• Patterns in Belief Updating: Turns out that in some contexts people important exhibit
systematic deviations!

This motivates Models of Belief Updating: noisy belief updating, overconfidence,
memory constraints, etc. (e.g., Benjamin 2019 Handbook, Cripps 2018 WP,
Gonçalves et al. 2025 REStud)

Take + theory & experimental!
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Where does this leave SEU and Bayes Rule?

Bayesian updating and SEU remain the main framework: very appealing principles and
well-known virtues and vices.

Behaviourally: neither comes for free and it’s important to know this.

Implications for models: Understanding better deviations allows us to explicitly
accommodate these in our model (even without letting go of Bayesian updating).

But unless some crucial element is missing, using BU and SEU allows better
understanding of modelling innovations.
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